If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x-450=0
a = 3; b = 15; c = -450;
Δ = b2-4ac
Δ = 152-4·3·(-450)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-75}{2*3}=\frac{-90}{6} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+75}{2*3}=\frac{60}{6} =10 $
| (3x+10)=(4x+-10) | | 3x^+15x-450=0 | | 3.6x+1.2=4.8x= | | 5x-12=3x*14 | | 14=7x/20-8 | | -9(x+8)=-34 | | 8x100=88x10^2 | | –7(y+8)=21 | | (6x+17)=(7x-3)=180 | | 1/2x+2/4x=3/4+9/4 | | 27=–9(y+5) | | 15=7+5x | | -2/5=w+6 | | 1/x-1/x^2=1/x¹ | | -x+2(-1)=-3 | | (x+6)=(x^2-7x+12) | | -9v-15=-5(v+7) | | 5(x-1)=-7x+7 | | (3-3i)+(7+4i)=0 | | -8w-40=8(w-1) | | -6(-5+4k)=-1+7k | | 2X2-9x-2=0 | | y/7+2=-1 | | 3x2+8=29 | | -8(u+5)=6u-12 | | -(7z+10)+(-87+4)=(-z+7)-(67-11) | | 5x-24=-6(x-7) | | -6=4(u-5)+3u | | 4(5x+1)=1/2(20x+6)+6 | | -3=-7y+4(y+3) | | 3e-e=3e-e | | 7i-(15-8i)=0 |